算法概念之高斯滤波

高斯平滑滤波器的核呈现的布局

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
 

定义

 
高斯滤波(Gauss filter)实质上是一种信号的滤波器,其用途为信号的平滑处理,数字图像用于后期应用,其噪声是最大的问题,因为误差会累计传递等原因,大多图像处理教材会在很早的时候介绍Gauss滤波器,用于得到信噪比SNR较高的图像(反应真实信号)。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。
 

应用

 
高斯滤波(高斯平滑)是图像处理,计算机视觉里面最常见的操作。
 

算法原理

 
高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,人们知道数字图像用于后期应用,其噪声是最大的问题,由于误差会累计传递等原因,很多图像处理教材会在很早的时候介绍Gauss滤波器,用于得到信噪比SNR较高的图像(反应真实信号)。与此相关的有Gauss-Lapplace变换,其实就是为了得到较好的图像边缘,先对图像做Gauss平滑滤波,剔除噪声,然后求二阶导矢,用二阶导的过零点确定边缘,在计算时也是频域乘积=>空域卷积。
滤波器就是建立的一个数学模型,通过这个模型来将图像数据进行能量转化,能量低的就排除掉,噪声就是属于低能量部分。
若使用理想滤波器,会在图像中产生振铃现象。采用高斯滤波器的话,系统函数是平滑的,避免了振铃现象。
 
参考资料:http://baike.baidu.com/view/2103722.htm
 
 
评论 (0) 分享 ()

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址